Employed by Industries and Sectors (NAICS 2007 – 1, 2, 3 and 4 Digits) for Canada, Selected Provinces, Edmonton (CMA) and Calgary (CMA) (Annual Average) (2001 - 2011)

(StatCan Product) Employed by industries and sectors (NAICS 2007 – 1, 2, 3 and 4 digits) for Canada, selected provinces (QC, ON, AB and BC), Edmonton (CMA) and Calgary (CMA) (annual averages).

Customization details:   This information product has been customized to present information on the employed by industries:   - TABLE 1: Employed by industries (NAICS 2007 – 1, 2, 3 and 4 digits) for Canada, selected provinces (Quebec, Ontario, Alberta and British Columbia) and the Alberta Census Metropolitan Areas (CMA) of Edmonton and Calgary – Annual Averages from 2001 to 2011 (in thousands).   Labour Force Survey   The Canadian Labour Force Survey was developed following the Second World War to satisfy a need for reliable and timely data on the labour market. Information was urgently required on the massive labour market changes involved in the transition from a war to a peace-time economy. The main objective of the LFS is to divide the working-age population into three mutually exclusive classifications - employed, unemployed, and not in the labour force - and to provide descriptive and explanatory data on each of these.   Target population   The LFS covers the civilian, non-institutionalized population 15 years of age and over. It is conducted nationwide, in both the provinces and the territories. Excluded from the survey's coverage are: persons living on reserves and other Aboriginal settlements in the provinces; full-time members of the Canadian Armed Forces and the institutionalized population. These groups together represent an exclusion of less than 2% of the Canadian population aged 15 and over.

National Labour Force Survey estimates are derived using the results of the LFS in the provinces. Territorial LFS results are not included in the national estimates, but are published separately.   Instrument design   The current LFS questionnaire was introduced in 1997. At that time, significant changes were made to the questionnaire in order to address existing data gaps, improve data quality and make more use of the power of Computer Assisted Interviewing (CAI).

The changes incorporated included the addition of many new questions. For example, questions were added to collect information about wage rates, union status, job permanency and workplace size for the main job of currently employed employees. Other additions included new questions to collect information about hirings and separations, and expanded response category lists that split existing codes into more detailed categories.   Sampling   This is a sample survey with a cross-sectional design.   Data sources   Responding to this survey is mandatory. Data are collected directly from survey respondents. Data collection for the LFS is carried out each month during the week following the LFS reference week. The reference week is normally the week containing the 15th day of the month.

LFS interviews are conducted by telephone by interviewers working out of a regional office CATI (Computer Assisted Telephone Interviews) site or by personal visit from a field interviewer. Since 2004, dwellings new to the sample in urban areas are contacted by telephone if the telephone number is available from administrative files, otherwise the dwelling is contacted by a field interviewer. The interviewer first obtains socio-demographic information for each household member and then obtains labour force information for all members aged 15 and over who are not members of the regular armed forces. The majority of subsequent interviews are conducted by telephone. In subsequent monthly interviews the interviewer confirms the socio-demographic information collected in the first month and collects the labour force information for the current month. Persons aged 70 and over are not asked the labour force questions in subsequent interviews, but rather their labour force information is carried over from their first interview.

In each dwelling, information about all household members is usually obtained from one knowledgeable household member. Such 'proxy' reporting, which accounts for approximately 65% of the information collected, is used to avoid the high cost and extended time requirements that would be involved in repeat visits or calls necessary to obtain information directly from each respondent. Error detection The LFS CAI questionnaire incorporates many features that serve to maximize the quality of the data collected. There are many edits built into the CAI questionnaire to compare the entered data against unusual values, as well as to check for logical inconsistencies. Whenever an edit fails, the interviewer is prompted to correct the information (with the help of the respondent when necessary). For most edit failures the interviewer has the ability to override the edit failure if they cannot resolve the apparent discrepancy. As well, for most questions the interviewer has the ability to enter a response of Don't Know or Refused if the respondent does not answer the question.

Once the data is received back at head office an extensive series of processing steps is undertaken to thoroughly verify each record received. This includes the coding of industry and occupation information and the review of interviewer entered notes. The editing and imputation phases of processing involve the identification of logically inconsistent or missing information items, and the correction of such conditions. Since the true value of each entry on the questionnaire is not known, the identification of errors can be done only through recognition of obvious inconsistencies (for example, a 15 year-old respondent who is recorded as having last worked in 1940).   Estimation   The final step in the processing of LFS data is the assignment of a weight to each individual record. This process involves several steps. Each record has an initial weight that corresponds to the inverse of the probability of selection. Adjustments are made to this weight to account for non-response that cannot be handled through imputation. In the final weighting step all of the record weights are adjusted so that the aggregate totals will match with independently derived population estimates for various age-sex groups by province and major sub-provincial areas. One feature of the LFS weighting process is that all individuals within a dwelling are assigned the same weight.

In January 2000, the LFS introduced a new estimation method called Regression Composite Estimation. This new method was used to re-base all historical LFS data. It is described in the research paper ""Improvements to the Labour Force Survey (LFS)"", Catalogue no. 71F0031X. Additional improvements are introduced over time; they are described in different issues of the same publication. Data accuracy   Since the LFS is a sample survey, all LFS estimates are subject to both sampling error and non-sampling errors.

Non-sampling errors can arise at any stage of the collection and processing of the survey data. These include coverage errors, non-response errors, response errors, interviewer errors, coding errors and other types of processing errors.

Non-response to the LFS tends to average about 10% of eligible households. Interviews are instructed to make all reasonable attempts to obtain LFS interviews with members of eligible households. Each month, after all attempts to obtain interviews have been made, a small number of non-responding households remain. For households non-responding to the LFS, a weight adjustment is applied to account for non-responding households.

Sampling errors associated with survey estimates are measured using coefficients of variation for LFS estimates as a function of the size of the estimate and the geographic area.

Datasets available for download

Additional Info

Field Value
Last Updated June 10, 2025, 15:09 (UTC)
Created June 10, 2025, 08:53 (UTC)
Domain / Topic
Domain or topic of the dataset being cataloged.
Employment and Labour
Description
A description of the dataset.

(StatCan Product) Employed by industries and sectors (NAICS 2007 – 1, 2, 3 and 4 digits) for Canada, selected provinces (QC, ON, AB and BC), Edmonton (CMA) and Calgary (CMA) (annual averages).

Customization details:   This information product has been customized to present information on the employed by industries:   - TABLE 1: Employed by industries (NAICS 2007 – 1, 2, 3 and 4 digits) for Canada, selected provinces (Quebec, Ontario, Alberta and British Columbia) and the Alberta Census Metropolitan Areas (CMA) of Edmonton and Calgary – Annual Averages from 2001 to 2011 (in thousands).   Labour Force Survey   The Canadian Labour Force Survey was developed following the Second World War to satisfy a need for reliable and timely data on the labour market. Information was urgently required on the massive labour market changes involved in the transition from a war to a peace-time economy. The main objective of the LFS is to divide the working-age population into three mutually exclusive classifications - employed, unemployed, and not in the labour force - and to provide descriptive and explanatory data on each of these.   Target population   The LFS covers the civilian, non-institutionalized population 15 years of age and over. It is conducted nationwide, in both the provinces and the territories. Excluded from the survey's coverage are: persons living on reserves and other Aboriginal settlements in the provinces; full-time members of the Canadian Armed Forces and the institutionalized population. These groups together represent an exclusion of less than 2% of the Canadian population aged 15 and over.

National Labour Force Survey estimates are derived using the results of the LFS in the provinces. Territorial LFS results are not included in the national estimates, but are published separately.   Instrument design   The current LFS questionnaire was introduced in 1997. At that time, significant changes were made to the questionnaire in order to address existing data gaps, improve data quality and make more use of the power of Computer Assisted Interviewing (CAI).

The changes incorporated included the addition of many new questions. For example, questions were added to collect information about wage rates, union status, job permanency and workplace size for the main job of currently employed employees. Other additions included new questions to collect information about hirings and separations, and expanded response category lists that split existing codes into more detailed categories.   Sampling   This is a sample survey with a cross-sectional design.   Data sources   Responding to this survey is mandatory. Data are collected directly from survey respondents. Data collection for the LFS is carried out each month during the week following the LFS reference week. The reference week is normally the week containing the 15th day of the month.

LFS interviews are conducted by telephone by interviewers working out of a regional office CATI (Computer Assisted Telephone Interviews) site or by personal visit from a field interviewer. Since 2004, dwellings new to the sample in urban areas are contacted by telephone if the telephone number is available from administrative files, otherwise the dwelling is contacted by a field interviewer. The interviewer first obtains socio-demographic information for each household member and then obtains labour force information for all members aged 15 and over who are not members of the regular armed forces. The majority of subsequent interviews are conducted by telephone. In subsequent monthly interviews the interviewer confirms the socio-demographic information collected in the first month and collects the labour force information for the current month. Persons aged 70 and over are not asked the labour force questions in subsequent interviews, but rather their labour force information is carried over from their first interview.

In each dwelling, information about all household members is usually obtained from one knowledgeable household member. Such 'proxy' reporting, which accounts for approximately 65% of the information collected, is used to avoid the high cost and extended time requirements that would be involved in repeat visits or calls necessary to obtain information directly from each respondent. Error detection The LFS CAI questionnaire incorporates many features that serve to maximize the quality of the data collected. There are many edits built into the CAI questionnaire to compare the entered data against unusual values, as well as to check for logical inconsistencies. Whenever an edit fails, the interviewer is prompted to correct the information (with the help of the respondent when necessary). For most edit failures the interviewer has the ability to override the edit failure if they cannot resolve the apparent discrepancy. As well, for most questions the interviewer has the ability to enter a response of Don't Know or Refused if the respondent does not answer the question.

Once the data is received back at head office an extensive series of processing steps is undertaken to thoroughly verify each record received. This includes the coding of industry and occupation information and the review of interviewer entered notes. The editing and imputation phases of processing involve the identification of logically inconsistent or missing information items, and the correction of such conditions. Since the true value of each entry on the questionnaire is not known, the identification of errors can be done only through recognition of obvious inconsistencies (for example, a 15 year-old respondent who is recorded as having last worked in 1940).   Estimation   The final step in the processing of LFS data is the assignment of a weight to each individual record. This process involves several steps. Each record has an initial weight that corresponds to the inverse of the probability of selection. Adjustments are made to this weight to account for non-response that cannot be handled through imputation. In the final weighting step all of the record weights are adjusted so that the aggregate totals will match with independently derived population estimates for various age-sex groups by province and major sub-provincial areas. One feature of the LFS weighting process is that all individuals within a dwelling are assigned the same weight.

In January 2000, the LFS introduced a new estimation method called Regression Composite Estimation. This new method was used to re-base all historical LFS data. It is described in the research paper ""Improvements to the Labour Force Survey (LFS)"", Catalogue no. 71F0031X. Additional improvements are introduced over time; they are described in different issues of the same publication. Data accuracy   Since the LFS is a sample survey, all LFS estimates are subject to both sampling error and non-sampling errors.

Non-sampling errors can arise at any stage of the collection and processing of the survey data. These include coverage errors, non-response errors, response errors, interviewer errors, coding errors and other types of processing errors.

Non-response to the LFS tends to average about 10% of eligible households. Interviews are instructed to make all reasonable attempts to obtain LFS interviews with members of eligible households. Each month, after all attempts to obtain interviews have been made, a small number of non-responding households remain. For households non-responding to the LFS, a weight adjustment is applied to account for non-responding households.

Sampling errors associated with survey estimates are measured using coefficients of variation for LFS estimates as a function of the size of the estimate and the geographic area.

Tags
Keywords/tags categorizing the dataset.
Format (CSV, XLS, TXT, PDF, etc)
File format of the dataset.
Dataset Size
Dataset size in megabytes.
Metadata Identifier
Metadata identifier – can be used as the unique identifier for catalogue entry
Published Date
Published date of the dataset.
Time Period Data Span (start date)
Start date of the data in the dataset.
2001-01-01 00:00:00
Time Period Data Span (end date)
End date of time data in the dataset.
2011-12-31 00:00:00
GeoSpatial Area Data Span
A spatial region or named place the dataset covers.
Field Value
Access category
Type of access granted for the dataset (open, closed, service, etc).
unrestricted
License
License used to access the dataset.
Open Government Licence - Alberta
Limits on use
Limits on use of data.
Location
Location of the dataset.
https://open.alberta.ca/opendata/employed-by-industries-and-sectors-for-canada-annual-average-2001-2011
Data Service
Data service for accessing a dataset.
Owner
Owner of the dataset.
Treasury Board and Finance
Contact Point
Who to contact regarding access?
osi.support@gov.ab.ca
Contact Point Email
The email to contact regarding access?
osi.support@gov.ab.ca
Publisher
Publisher of the dataset.
Publisher Email
Email of the publisher.
Author
Author of the dataset.
Author Email
Email of the author.
Accessed At
Date the data and metadata was accessed.
Field Value
Identifier
Unique identifier for the dataset.
Language
Language(s) of the dataset
English
Link to dataset description
A URL to an external document describing the dataset.
Persistent Identifier
Data is identified by a persistent identifier.
Globally Unique Identifier
Data is identified by a persistent and globally unique identifier.
Contains data about individuals
Does the data hold data about individuals?
Contains data about identifiable individuals
Does the data hold identifiable data about individual?
Contains Indigenous Data
Does the data hold data about Indigenous communities?
Field Value
Version notes
Version notes about the dataset.
Is version of another dataset
Link to dataset that it is a version of.
Other versions
Link to datasets that are versions of it.
Provenance Text
Provenance Text of the data.
Provenance URL
Provenance URL of the data.
Temporal resolution
Describes how granular the date/time data in the dataset is.
GeoSpatial resolution in meters
Describes how granular (in meters) geospatial data is in the dataset.
GeoSpatial resolution (in regions)
Describes how granular (in regions) geospatial data is in the dataset.
Field Value
Indigenous Community Permission
Who holds the Indigenous Community Permission. Who to contact regarding access to a dataset that has data about Indigenous communities.
Community Permission
Community permission (who gave permission).
The Indigenous communities the dataset is about
Indigenous communities from which data is derived.
Field Value
Number of data rows
If tabular dataset, total number of rows.
Number of data columns
If tabular dataset, total number of unique columns.
Number of data cells
If tabular dataset, total number of cells with data.
Number of data relations
If RDF dataset, total number of triples.
Number of entities
If RDF dataset, total number of entities.
Number of data properties
If RDF dataset, total number of unique properties used by the triples.
Data quality
Describes the quality of the data in the dataset.
Metric for data quality
A metric used to measure the quality of the data, such as missing values or invalid formats.

0 Comments

Please login or register to comment.